

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

FM4017 Project 2024

AI driven Development of Open-source,
Cross-platform Mobile Applications for
Sensor Data Monitoring and Analysis

MP-10-24

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FM4017 Project, 2024

Title: AI-Driven Development of Open-Source, Cross-Platform Mobile Apps for Sensor Data

Monitoring and Analysis

Project group: MP-10-24

Group participants: Ørjan Ingebrigtsen

Kim Langvannskås

Aleksander Wad Holthe

Supervisors: Hans-Petter Halvorsen, Saba Mylvaganam, USN, Dept. EE,

IT and Cybernetics

External partners:

Summary:

Today almost everyone has access to a mobile device and uses it to communicate,

access information, conduct different tasks, and more. Artificial intelligence (AI) is

increasingly used as a tool to automate processes and analyze data effectively. To

combine mobile application and AI to analyze sensor data is therefore an important

topic.

The object of this project was to investigate cross-platform development tool for

mobile application development and AI models to enable the development of a mobile

application for monitoring sensors in a building, retrieve weather data, and make

energy prediction. To be able to do this, energy simulations, parameters used for

simulation, and online sources for weather data also had to be investigated and building

data collected.

In the report the development of the mobile application is described together with the

development of the database and AI model web APIs.

In the results chapter the first version mobile application user interface is presented. It

is there shown the functionality of the mobile application.

A mobile application using AI can significantly enhance the user experience and more

complex or demanding tasks can be solved. By using cloud services and APIs, the

computing requirements of the mobile device is reduced.

i

Preface
The idea behind this project is the increasing use of mobile devices and mobile applications

in almost all elements of life. Today we use the mobile to communicate by phone or e-mail,

social media, work and education, and for many other applications and tasks. Mobile devices

have replaced or are replacing many older technologies, and new uses for them are

continuously developing. We also see that artificial intelligence (AI) is now more commonly

used to automate processes, analyze data, recognize patterns, and other tasks. If you read a

news article today it frequently states that it is using AI to generate or to help write the

article.

During the first part of the project a project description [1] was made by the project

supervisor in collaboration with the project team. We there focused the scope and tasks of the

project. The core of the project is the development of a mobile application that uses sensors

in a building, weather data and forecasts, and AI models to predict the energy consumption of

the building for the next period. To enable these studies of technologies and methods is

needed. The pace of the project and the limitations in time have limited the time available to

develop the mobile application, so further development is needed to have a final application

ready to be launched commercially.

During the project, the project supervisors Hans-Petter Halvorsen and Saba Mylvaganam

have been an appreciated resource and support. They have given feedback and helped guide

us in our work on the project. We would like to thank them for their support.

Porsgrunn, 17.11.2024

ii

Table of Contents
Preface .. i

Table of Contents .. ii

Nomenclature ... iv

1 Introduction to mobile application development ... 1

1.1 Background for mobile application development project .. 1
1.2 Objectives for mobile application development project ... 1
1.3 Methods used in mobile application development project .. 3
1.4 Scope of mobile application development project .. 3

2 Mobile application development tools study and selection 4

2.1 Android Studio .. 4
2.2 Xcode for iOS .. 5
2.3 Cross platform .. 5

2.3.1 React Native ... 5
2.3.2 Xamarin .. 5
2.3.3 NET MAUI ... 5
2.3.4 Flutter ... 6
2.3.5 SOLAR2D ... 6

2.4 Development tool comparison .. 6
2.5 Selection of mobile application development tool for this project 7

3 Study of AI tools for prediction and forecasting, and selection of tool 8

3.1 Traditional methods for energy predictions .. 8
3.2 AI Methods for energy predictions ... 8

3.2.1 Time Series Forecasting Models ... 8
3.2.2 Machine Learning Techniques... 8
3.2.3 Deep Learning Models .. 9

3.3 Pre-built AI Services ... 9
3.4 Selection of AI prediction tool for the project ... 10
3.5 AI as a tool for programming ... 10
3.6 AI as a tool for report writing ... 10

4 Online sources for weather forecast data, and selection of source 11

4.1 Examples of weather forecast data APIs ... 11
4.2 Selection of online source of weather data to use in project .. 12

5 Parameters used for energy simulations in buildings 13

5.1 TEK17 ... 13
5.2 Norwegian Standard NS 3031:2014 ... 13
5.3 Norwegian Specification 3031:2023 .. 14
5.4 Climatic data .. 14
5.5 Indoor environmental data ... 14

6 Azure SQL cloud database with web API .. 16

6.1 Azure SQL database ... 16
6.2 Web API using Microsoft Entity Framework .. 16
6.3 Azure SQL database ... 20
6.4 Azure app service for web API .. 21
6.5 Testing of web API .. 21

iii

7 AI prediction model using ChatGPT 3.5 and Azure web API 22

7.1 Overview of the prediction model ... 22
7.2 Using Azure AI Studio .. 22
7.3 Generating predictions with ChatGPT 3.5 .. 23

8 Development of the mobile application .. 26

8.1 Detailed system sketch over energy prediction system... 26
8.2 FURPS+ for mobile application ... 27
8.3 Use case diagram for mobile application ... 28
8.4 Use case: Get weather data ... 28
8.5 Use case: Get database data ... 31
8.6 Use case: Post database data ... 35
8.7 Use case: View current data .. 38
8.8 Use case: View historical data .. 42
8.9 Use case: Predict future energy consumption .. 45

9 Results of mobile application development ... 48

9.1 Main page of mobile application ... 48
9.2 Page to present current data received from database API .. 52
9.3 Page to present current data received from weather forecast API 54
9.4 Examples of pages showing graphs of historical data ... 56
9.5 Page to present latest energy prediction made by the AI model 60

10 Discussion and conclusion of mobile application development project ... 63

11 References ... 64

Appendices .. 71

iv

Nomenclature
AI Artificial Intelligence

API Application programming interface

ARIMA Auto-regressive integrated moving average

AutoML Automated machine learning

CNN Convolutional neural networks

CSV Comma-separated values

EPB Energy performance of buildings

IDE Integrated development environment

iOS iPhone operating system

ISO International Organization for Standardization

JSON JavaScript object notation

LRM Linear regression models

LSTM Long short-term memory networks

MAUI Multi-platform (cross-platform) application user interface

MET (Norway) Norwegian Meteorological Institute

ML Machine learning

NLP Natural language processing

NS Norwegian standard

NSPEK Norwegian specification

OS Operating system

RNN Recurrent neural networks

SDK Software development kit

SQL Structured query language

UI User interface

UP Unified software development process

URL Uniform resource locator

WinUI Windows user interface

XAML Extensible application markup language

1

1 Introduction to mobile application
development

In this project the development of an app for mobile phone that presents current and historical

data for indoor environmental data, energy consumption, weather data, and prediction of future

energy consumption is studied. The project includes selection of tools and data sources. It also

includes the use of Artificial Intelligence (AI) to predict energy consumption in the coming

period.

1.1 Background for mobile application development project

As described in the project description [1] the background for this project is the pivotal role of

mobile phones and apps in modern technology.

“In today’s world, mobile phones and apps are at the center of technological advancements.

The two dominant platforms for smartphones are Apple’s iOS and Google’s Android.

Numerous tools are available for developing mobile applications, but one of the most

transformative is AI. How can AI be utilized and integrated into the development of

contemporary mobile applications?

AI can enhance mobile app development in several ways:

• Personalization: AI algorithms can analyze user behavior to provide personalized

experiences, making apps more engaging and user-friendly.

• Automation: AI can automate repetitive tasks, improving efficiency and reducing

development time.

• Predictive Analytics: By analyzing data, AI can predict user needs and preferences,

allowing developers to create more intuitive and responsive apps.

• Enhanced Security: AI can detect and respond to security threats in real-time, ensuring

user data is protected.

• Natural Language Processing (NLP): Integrating NLP allows for advanced features like

voice recognition and chatbots, enhancing user interaction.

By leveraging AI, developers can create smarter, more efficient, and highly personalized

mobile applications that meet the evolving needs of users.”

Above is cited directly from project description by Halvorsen, Mylvaganam, Holte,

Langvannskås, and Ingebrigtsen [1].

1.2 Objectives for mobile application development project

The objective of this project is to develop a mobile application for mobile phones that can

present current and historical indoor and outdoor environmental data, energy consumption,

and prediction of energy consumption in the coming period based on these data with the help

of AI. The mobile application will present data from a cloud-based test database, online

weather data source, and the AI prediction model. The mobile application should be available

2

both for iPhone operating system (iOS) and Android mobile operating system (OS). In figure

1.1 you see a system sketch of the energy prediction system.

Figure 1.1: System sketch of energy prediction mobile application and its integration with cloud database,

ChatGPT 3.5 AI, and weather API

On the right side of the system sketch in figure 1.1 you see the mobile application and the

data handling application. In the first version the data handling application will be integrated

into the mobile application, but in the future, this will be a separate application hosted on a

server or as a web application. On the left side of the system sketch in figure 1.1 you see the

other services that are used or developed as part of the project. The MET weather application

programming interface (API) [2] is an online service that provides weather data and forecast

through their API. The Azure structured query language (SQL) cloud database is a service

3

developed as part of the project using Microsoft Visual Studio and the Azure cloud service.

The ChatGPT 3.5 [3] AI model is used to predict energy consumption. It is made available

through an API developed as part of the project using Microsoft Visual Studio and the Azure

cloud service.

1.3 Methods used in mobile application development project

In this project studies using open-source materials will be conducted on tools for app

development, AI tools suitable for predictive models, parameters used in energy calculations

of buildings, and sources for weather data.

Using tools later selected, a prototype app will be developed. This app will source test data

from a cloud-based test database containing necessary indoor environmental data and energy

consumption data. Weather data will be sourced from a later selected online source. Using

AI, an energy consumption prediction model will be created, and predictions displayed in the

app. The app will be developed using the Unified Software Development Process (UP).

A software test environment will be set up to test the prototype app.

GitHub will be used to document software development.

1.4 Scope of mobile application development project

The scope of this application development project, as described in the project description [1],

are summarized below:

• Selection of a mobile application development tool for developing the application. This

will involve a study of possible development tools and discussion of their suitability

for this project.

• Investigation of AI tools that can be used for prediction of energy consumption and the

selection of the tool to be used in this project.

• Selection of source for weather data that is needed to do the prediction of energy

consumption. A study of available sources and requirements will also need to be

conducted.

• In energy simulation certain parameters are being used. As part of the project the

energy simulation methods will be studied and parameters used will be identified.

• Selection of building as a case study for the prototype mobile application needs to be

selected based on available data for the project team.

• Using the AI model the mobile application should present an energy prediction based

on the available data for the application.

• The mobile application should have an intuitive and user-friendly user interface (UI)

that presents building data, weather data, building energy consumption, and energy

prediction.

The results of the project and the development will be documented in this report.

4

2 Mobile application development tools
study and selection

Several development environments exist for Android and iOS mobile application

development. The primary and most widely used environments are platform-specific,

meaning different codebases and programming languages are required to build the same

application for Android and iOS. However, some environments support cross-platform

development, allowing developers to save time, reduce maintenance, and lower costs by

creating applications for both platforms with a single codebase. This chapter will explore the

advantages and disadvantages of various development environments for mobile applications,

focusing on a comparison between Android and iOS.

Table 2.1: Comparison of iPhone vs Android Statistics based on web page by Backlinko Team [4]

Aspect Android (Google Play) iOS (App Store)

Global market share Over 70% Around 30%

Number of Applications (2023) 2.44 million 1.8 million

User Spending (2023) $51 billion $124 billion

Both Android and iOS are found on a range of devices, including phones, watches, TVs, and

tablets. Android is an open-source operating system led by Google, whereas iOS is

proprietary and owned by Apple.

2.1 Android Studio

According to the web page “Meet Android Studio” by Android Developers [5]:

“Android Studio is the official Integrated Development Environment (IDE) for Android app

development. Based on the powerful code editor and developer tools from IntelliJ IDEA,

Android Studio offers even more features that enhance your productivity when building

Android apps”

Android Studio is available for Windows, Linux, macOS, and ChromeOS. It primarily

supports Kotlin as the preferred programming language, though Java and C++ are also

supported. Android Studio offers the Android Software Development Kit (SDK), which

includes debugging tools, libraries, sample code, tutorials, and an emulator, all essential for

Android development.

5

Some limitations include its lack of cross-platform development support and high system

resource demands, which may lead to slow performance on less powerful machines.

2.2 Xcode for iOS

Xcode is Apple's IDE for developing software for macOS, iOS, iPadOS, watchOS, and tvOS

[6]. It is a proprietary software developed by Apple and is available only on macOS. It

includes the iOS SDK, which is a collection of tools for the creation of applications for

Apple’s iOS [7]. Swift is the primary programming language, though Xcode also supports

Objective-C, C, C++, Python, Ruby, and others.

A drawback of Xcode is its macOS exclusivity, making it accessible only to Mac users.

Additionally, it may perform slowly on complex projects, particularly on older Macs.

2.3 Cross platform

Cross-platform development tools allow a single codebase to be deployed on both Android

and iOS, offering time and cost efficiency. However, most cross-platform tools require

macOS to build and test iOS applications due to restrictions on the iOS SDK

Multiple solutions exist for cross platform development, and this chapter provides an

overview of some of them.

2.3.1 React Native

React Native, developed by Meta, enables developers to build native Android and iOS

applications using JavaScript [8]. React Native compiles to native code, delivering high

performance, and allows for the integration of third-party libraries through a package

manager, supporting customizable UI components. Development can be done on Windows,

macOS, and Linux, though macOS is required to build for iOS.

2.3.2 Xamarin

Xamarin, based on the .NET framework, enables cross-platform development for iOS,

Android, and Windows using C# as the primary language. Its UI is developed using XAML.

Although Xamarin was officially retired in 2024 and replaced by .NET MAUI, it remains

notable for its role in cross-platform development. The development environment is Visual

Studio, and while development is primarily supported on Windows, macOS is required to

build for iOS.

2.3.3 NET MAUI

.NET Multi-platform App UI (MAUI) is the latest framework from Microsoft, replacing

Xamarin as the official .NET solution for cross-platform development. Built on .NET, .NET

MAUI supports development for Android, iOS, Windows, and macOS using a single

codebase [9]. It uses C# for logic and XAML for UI design, aligning with the .NET

ecosystem for a cohesive experience.

6

2.3.4 Flutter

Flutter, developed by Google, enables cross-platform development for Android, iOS,

Windows, Linux, and macOS. It uses the Dart programming language, and its Hot Reload

feature allows developers to see changes instantly, speeding up debugging and development

time. Flutter is known for its comprehensive widget catalog, enabling developers to create

visually appealing UI components [10].

2.3.5 SOLAR2D

SOLAR2D, formerly Corona SDK, is an open-source cross-platform framework used to

rapidly create apps and games for mobile devices and desktop systems [11]. It supports

Windows, macOS, iOS, and Android and offers rapid deployment and fast performance.

2.4 Development tool comparison

Table 2.2 compares some of the key features of each development tool for mobile application

development. The table is based on the sources mentioned in the chapters of each

development tool.

Table 2.2: Mobile application development tool comparison

Development

tool

Platform

support

Primary

language

Strengths Limitations

Android

Studio

Android Kotlin Official Android

support, extensive

SDK, profiling

tools

High system

demands, Android-

only

Xcode iOS, macOS,

watchOS,

tvOS

Swift Integrated Apple

SDK, UI design

tools, regular

updates

macOS-only, can be

slow with complex

projects

React Native Android, iOS JavaScript Cross-platform,

native code

compilation, large

UI component

library

macOS required for

iOS builds, limited

access to some native

features

7

Development

tool

Platform

support

Primary

language

Strengths Limitations

Xamarin Android, iOS,

Windows

C# Part of .NET,

compiles to native,

supports Windows

development

macOS required for

iOS, officially

replaced by .NET

MAUI

.NET MAUI Android, iOS,

Windows

C# Single codebase,

cross-platform,

modern UI

components

Newer technology,

macOS required for

iOS builds, possible

platform adaptation

needed

Flutter Android, iOS,

Windows,

macOS, Linux

Dart Fast hot reload,

large widget

catalog, Google

integration

Less mature

ecosystem, macOS

required for iOS

builds

SOLAR2D Android, iOS,

Windows,

macOS

Lua Optimized for 2D

game dev, fast

deployment

Lua is less widely

used

2.5 Selection of mobile application development tool for this
project

After studying the mentioned mobile application development tools, .NET MAUI was

selected as the tool to be used in this project. The main factors for making this choice were:

• .NET MAUI allows us to develop an application that uses one codebase that can be

deployed to Android, iOS and WinUI.

• When making changes to the code, it only needs to be maintained in one place. For

some special instances, platform specific adaptation might be needed.

• .NET MAUI is integrated in the .NET framework, giving us access to a large

ecosystem with libraries, resources, and tools.

• .NET MAUI has Microsoft support and updates as part of .NET.

8

3 Study of AI tools for prediction and
forecasting, and selection of tool

Traditional statistical methods have long been used for energy forecasting, providing a solid

foundation for predicting future consumption. However, AI has introduced more advanced

techniques, offering improved accuracy, enhanced capabilities, and simpler implementation.

3.1 Traditional methods for energy predictions

Before exploring AI tools, it’s essential to recognize the traditional statistical approaches

commonly applied for energy prediction:

• Auto-Regressive Integrated Moving Average (ARIMA): A linear model that predicts

future values by analyzing historical time series data, based on the assumption that

underlying patterns like seasonality and trend remain consistent [12].

• Exponential Smoothing: A technique used for short-term predictions, emphasizing

recent data more than older data, making it responsive to immediate changes [13].

• Linear Regression Models (LRM): Simple regression models that use variables like

temperature, time of day, and historical consumption to predict future usage.

While effective in some cases, these traditional models often struggle with non-linear data

and complex relationships between energy consumption and external factors like weather,

time, and consumer behavior.

3.2 AI Methods for energy predictions

AI-based forecasting has several advantages over traditional methods, particularly in

handling large datasets and uncovering hidden patterns. In this chapter some key AI

approaches are described.

3.2.1 Time Series Forecasting Models

Long Short-Term Memory Networks (LSTM) is a specialized form of recurrent neural

networks (RNN) designed for sequential data, such as time series. LSTMs are particularly

effective for energy consumption prediction since they can learn from long-term

dependencies [14].

3.2.2 Machine Learning Techniques

Random Forest & Decision Trees are tree-based models that are effective for regression tasks

involving multiple factors (such as weather data and energy consumption). Random forests,

an ensemble of decision trees, can improve accuracy.

9

3.2.3 Deep Learning Models

Combining Convolutional Neural Networks (CNN) and LSTM are in some cases beneficial.

CNNs are efficient at recognizing patterns, while LSTMs handle time dependencies. This

combination works particularly well when you need to capture both spatial (e.g., regional

weather patterns) and temporal (e.g., historical consumption) dependencies [15].

3.3 Pre-built AI Services

Energy forecasting for the application being made will use a pre-built AI service as an API,

pre-built AI services allow you to leverage sophisticated forecasting capabilities without

complex setup. In table 3.1 some of the most frequently used AI services are listed with a

comparison of capabilities.

Table 3.1: Overview and comparison of pre-built AI services with their task capabilities based on sources for

each service

AI Service Text

Processing

AutoML Time Series

Forecasting

Code

Completion

General AI

Tasks

ChatGPT

(OpenAI) [16]
✓ ✖ ✖ ✓ ✓

GitHub

Copilot [17]
✖ ✖ ✖ ✓ ✖

Amazon

Forecast [18]
✖ ✓ ✓ ✖ ✖

Google

AutoML [19]
✖ ✓ ✓ ✖ ✓

Microsoft

Azure AI [20]
✓ ✓ ✓ ✖ ✓

As shown in table 3.1 the landscape of AI tools and services that could be used for energy

forecasting is diverse, ranging from traditional statistical models to advanced machine

learning frameworks, and fully managed AI services. Depending on the complexity of the

project, goals, and technical expertise, there are solutions available that require little to no

manual model building.

10

3.4 Selection of AI prediction tool for the project

In this project the selection of the right AI tool is key to achieve accurate energy predictions.

The ideal tool should provide good prediction capabilities, ease of integration, scalability, and

robust support. After evaluating several AI tools and services, ChatGPT hosted on Microsoft

Azure emerged as the most suitable choice. The justification for the selection were:

• Hosting ChatGPT on Azure allows seamless integration with other Azure services.

The integration with Azure enables streamlined workflows and reduces the

complexity of setting up and managing the infrastructure.

• Using ChatGPT as a managed service offers financial and operational benefits.

Azure’s flexible pricing models allow us to scale usage on needs and budget

constraints.

• Microsoft Azure follows a set of compliance certifications and security standards.

• With ChatGPT hosted on Azure the need for model training and configuration is

reduced. The model comes pre-training and can be quickly configured to meet our

requirements.

3.5 AI as a tool for programming

The use of AI in programming is growing, and it is also changing how programmers write

code [21]. It can support programmers in writing code, debug code, execute projects, and

help in documenting the code. There is also a growth in the available tools based on AI that

are there to support programmers. In this project we are using GitHub, and one example of

the available tools is the GitHub Copilot [22].

For this project AI has been used in the development of the mobile application to help

understand error messages, structure the code, and suggest improvement. This helps reduce

the development time and allows the programmers to focus on integration rather than coding

challenges. The AI tool used in this project is ChatGPT [16].

3.6 AI as a tool for report writing

According to the article “How to Use AI to Write Reports: A Guide” by Insight7 [23]:

“Traditional report writing often involves extensive data collection, detailed analysis, and

hours spent drafting, revising, and formatting. For professionals across fields, this process

can be tedious and time-consuming.”

According to the same article, AI tools can help us do these tasks. You can get help from AI,

based on your data, help outline the report, generating drafts, refining content, and finalizing

and formatting the report.

For this report we have had help from AI in helping refining content, finalizing the report,

and checking for errors. The AI tool used in this project is ChatGPT [16].

11

4 Online sources for weather forecast
data, and selection of source

As described in the project description [1], part of the project is to study sources for online

weather forecast data. There are many sources of data available online, but for this project

one weather API needs to be selected.

4.1 Examples of weather forecast data APIs

In the table 4.1 below you can see a selection of weather forecast data APIs available to

access global weather data according to weatherstack article by Chauahn [24].

Table 4.1: Overview of weather forecast APIs to access global weather data according to weatherstack article by

Chauhan [24]

Name Features Pricing

Weatherstack [25] • Global coverage

• Multiple languages

• Reliable and easy-to-use solution

Based on weatherstack article [24]

Free and paid plans [26]

OpenWeatherMap

[27]

• Present weather conditions

• 5-day and 16-day long-term

forecasts

• Trustworthy source of weather

data

Based on weatherstack article [24]

Free and paid plans [28]

Weatherbit [29] • Unparalleled forecast accuracy

• Hyperlocal weather

• 99,9% uptime

Based on weatherstack article [24]

Free and paid plans [30]

AccuWeather [31] • Global coverage

• Current conditions

• Hourly and daily forecasts

Free and paid plans [32]

12

Based on weatherstack article [24]

Name Features Pricing

Tomorrow.io [33] • Fast, reliable and accurate

• Interface

Based on weatherstack article [24]

Free and paid plans [34]

Visual Crossing [35] • Single API call

• 50+ years of data

• Sub-hourly, hourly and daily data.

Based on weatherstack article [24]

Free and paid plans [36]

Weather company

[37]

• Real-time weather data

• Comma-separated values (CSV)

and JavaScript Object Notation

(JSON) results

• Geocoding

Based on weatherstack article [24]

Paid plans [37]

4.2 Selection of online source of weather data to use in project

In this project we are focusing on the Norwegian regulations for energy calculations and

parameters used there.

According to the Norwegian Specification SN-NSPEK 3031-2023 appendix A.8.1 [38],

climate data could be sourced from The Norwegian Meteorological Institute or other

renowned source that follows the rules in World Meteorological Organization: Guide to

meteorological instruments and methods of observation [39].

Based on this we are for this project selecting to use The Norwegian Meteorological Institute

[40].

The Norwegian Meteorological Institute offers different APIs for weather data [2]. For the

project we need current data, forecasts for the coming period, and access to historical data.

The Norwegian Meteorological Institute weather API locationforecast [41] provides a full

weather forecast for one location, that is, a forecast with several parameters for a nine-day

period. Historical data are not available via an API, but The Norwegian Meteorological

Institute has archive data that can be downloaded [42].

13

5 Parameters used for energy simulations
in buildings

In this chapter energy simulations and parameters used are studied. The study focuses on

Norwegian regulations for energy calculations and parameters used there. Based on the study

several suggested parameters for climate data and indoor environmental data is suggested to

be used as the input for the energy estimation model.

5.1 TEK17

TEK17 [43] is the current regulations on technical requirements for construction works

(Norwegian: “Forskrift om tekniske krav til byggverk”) for Norway. The regulation is

published in Norwegian, but there exists an unofficial translation released by the Norwegian

Building Authority [44].

According to the regulations section 1-1 [43], the purpose of it is (cited from translation

[44]):

“The Regulation is intended to ensure that projects are planned, designed and executed on the

basis of good visual aesthetics, universal design, and in a manner that ensures that the project

complies with the technical standards for safety, the environment health and energy.”

Chapter 13 [45] gives requirements for indoor climate and health and chapter 14 [46] gives

requirements for Energy.

According to section 14-2 (4) [44] [47], the buildings energy requirements and heat loss

figures shall be calculated in accordance with Norwegian Standard NS 3031:2014. Also,

section 14-2 (5) [44] [47] states that an energy budget must be calculated for non-residential

buildings using actual figures. The regulation also gives minimum requirements for energy

efficiency in section 14-3 [44] [48]. These are given as minimum U-values for building parts

(outer walls, roofs, floors, windows, and doors) and leakage figures for the building.

5.2 Norwegian Standard NS 3031:2014

The Norwegian Standard NS 3031:2014 [49] covers “Calculation of energy performance of

buildings – Method and data”.

NS 3031:2014 is referenced in TEK17 section 14-2 (4) [47] and 14-4 (2) [50] but is no longer

a valid standard [51]. The standard was withdrawn February 1st, 2018. According to Standard

Norge, the reason for this is that the standard conflicts with new European standards. This is

linked to NS-EN ISO 52000-1 being published in 2017.

According to Standard Norge’s article [51] the Norwegian Standard NS 3031 [49] is under

revision to adapt to the content of NS-EN ISO 52000-1 [52] and other European standards.

As stated in the article [51] the Norwegian Standard NS 3031:2014 [49] can still be used.

14

5.3 Norwegian Specification 3031:2023

The Norwegian Specification SN-NSPEK 3031-2023 [38] covers “Energy performance of

buildings – Calculation of energy needs and energy supply”. This specification is only

available in Norwegian language.

According to the specification [38] it is referencing the European standards that are part of

what is referenced as the Energy Performance of Buildings (EPB) or “set of EPB standards”

as it is called in NS-EN ISO 52000-1:2017 [52]. In addition, the specification [38] states that

it also in addition points to alternative ways to calculate the energy requirements for

buildings. The specification [38] is also adapted to the use of dynamic calculation programs.

5.4 Climatic data

According to the Norwegian Standard NS-EN ISO 15927-4 chapter [53] and the Norwegian

Specification SN-NSPEK 3031-2023 [38], the reference year used for energy calculations

should at least contain the following metrological parameters:

• Air temperature, in °C.

• Relative humidity, in %.

• Wind speed, in m/s.

• Direct normal solar irradiance, in W/m².

• Diffuse solar irradiance on a horizontal surface, in W/m².

According to the specification [38] the energy consumption can be conducted using a

standard reference climate or local climate. For Norway, the standard reference climate is

defined as the Oslo-area.

Based on this the above measured parameters can be used either as local measured data or

taken from online sources.

5.5 Indoor environmental data

According to the Norwegian Specification SN-NSPEK 3031-2023 A.7 [38] the main

environmental parameter for the indoor thermal environment is indoor air temperature in °C.

This is for the energy calculation used as a set temperature for the building according to

building type with the possibility to adjust for operational hours.

In the specification [38] the air quality is described as minimum air flow through the

ventilation in m³/(h·m²). This could be measured in the ventilation system.

An alternative to use the volume of air, could be to use the Norwegian Standard NS-EN

16798-1:2019 [54]. This standard [54] split the input parameters for design and assessment of

energy performance of buildings into the following sub chapters:

• Thermal environment.

• Design for Indoor air quality.

• Humidity.

• Lighting.

15

• Noise.

Noise is mostly handled in the design process of the building, and not that relevant for this

project.

Based on the standards appendix A [54], the following indoor environmental parameters

could be used for the basis of energy calculations in addition or as an alternative to air flow

rates; CO₂ concentration, in ppm, and relative humidity, in %.

For lighting the specification [38] is saying that for larger rooms there should be a system

with occupancy detection or zone control. The specification [38] also references the

Norwegian Standard NS-EN 15193-1:2017+A1 [55] which covers “Energy performance of

buildings – Energy requirements for lighting”. This standard [55] describes two methods to

calculate the lighting energy and one to measure it. The measured method requires to

measure the energy consumption on all lighting in the building on separate meters. In the

Norwegian Standard NS-EN 16798-1:2019 appendix A [54] parameters for lighting are

illuminance, in lx.

In addition, for design the standard [54] uses a measure for how even the lightning are in the

room, but this is normally used for calculations in the design phase and during quality

control. To measure this the illuminance must be measured on multiple points in the room.

Based on this, the following indoor environmental parameters could be suggested to be used

as possible inputs for the energy estimation:

• Indoor air temperature, in °C.

• Air flow, in m³/s.

• CO₂ concentration, in ppm.

• Relative humidity, in %.

• Occupancy of room, Boolean (true or false).

• Illuminance, in lx.

Based on the size and complexity of the building the number and type of sensors will vary.

Also, not all sensors might be present for the building, and then will not be available as data

for the estimation.

16

6 Azure SQL cloud database with web API
To connect the application to the cloud database, a web API is needed. In this chapter the

implementation of the web API on Azure and the Azure SQL database is described.

6.1 Azure SQL database

An empty Azure SQL database was created on the Azure portal. The name of the database is

database. The process of creating a database in Azure is shown on the website “Create a

single database - Azure SQL Database” by Assaf [56]

6.2 Web API using Microsoft Entity Framework

To create the web API the tutorial “Create a web API with ASP.NET Core” by Microsoft

[57] were partly followed. The tutorial shows how to create a controller-based web API with

ASP.NET Core. The tutorial shows how to create a web API for a database running in the

memory of the unit running the program. In this project we are using an in-memory database

for testing and a Azure SQL database for production, so this was changed in the code using

information from the tutorial “Connect to and query Azure SQL Database using .NET and the

Microsoft.Data.SqlClient library” by Microsoft [58].

The changes done to the ASP.NET core web API template is the following:

• Added model classes for all tables

• Added database context for all tables

• Registered the database context for all tables

• Scaffolded a controller for each table

• Created migrations for the tables and migrated them to the database

An example of the content of a class for a database table, BuildingTemperatureItem.cs, is

shown in figure 6.1. Also, the content of the class for the database context,

DatabaseContext.cs, is shown in figure 6.2. For each database table a class as shown in figure

6.1 is created.

The connection string for the database is found in the Azure portal for the database and stored

as a connection string in the Azure web app for web API. In the visual studio code, the

connection string is empty in the appsettings.json file. In figure 6.3 the appsettings.json is

shown.

The EPPlus part of appsettings.json sets the non-commercial license for this package which

allows reading the excel file defined in DataFilePath. This file contains data that is used to

fill the in-memory database with data during the launch of the program when using an in-

memory database.

The selection of if you are using the in-memory or the SQL database is based on the

connection string which is only present when running the program on the Azure app service.

The code for the selection is shown in figure 6.4.

17

Figure 6.1: Example of content of class for BuildingTemperatureItem.cs

Figure 6.2: Example of content of the database context class DatabaseContext.cs

18

Figure 6.3: Content of the appsettings.json file

Figure 6.4: The selection of SQL or in-memory database based in connection sting in program.cs

When using the in-memory database we start a special service and pipeline to load the data

from the excel file data.xlsx to the in-memory database and start Swagger [59]. Swagger is

used to create a user interface to test the web API, when running on local host, in a web

browser.

Figure 6.5: Code to start the necessary service and pipeline to load data from data.xlsx to the in-memory

database and start Swagger

19

We will not go into detail of the configuration of the un-memory database services or

pipeline since this mainly is for testing purposes during the development stage.

To have the API working, in addition to the program file, classes for the tables, and database

context we need a controller for each table. The controllers are created by making scaffolded

items. The process is described in the tutorial “Create a web API with ASP.NET Core” by

Microsoft [57]. This process creates a controller with actions without the need to code

anything in Visual Studio.

For the classes BuildingEnergyMeterItem, BuildingRelativeHumidityItem,

BuildingTemperatureItem, EnergyPredictionItem, and WeatherForecastItem, we had to add

one action. This action retrieves the latest entry or entries into the database table. For

BuildingEnergyMeterItem, BuildingRelativeHumidityItem, and BuildingTemperatureItem the

last entry into the table is retrieved based on the DateTime column. As an example, the code

for this action from the BuildingTemperatureItemsController is shown in figure.

Figure 6.6: Example of latest action from the BuildingTemperatureItemsController

For the EnergyPredictionItem, and WeatherForecastItem classes we had to have an action

that retrieved several rows with the last ExecuteTime and DateTime respectively. In figure

6.7, the latest action code from the WeatherForecastItemsController is shown.

Figure 6.7: Example of latest action from the WeatherForecastItemsController

20

For the WeatherForecastUoMItem we had to create an action to retrieve the UoM for one

attribute. The code for this action from the WeatherForecastUoMItemsController is shown in

figure 6.8.

Figure 6.8: Example of code to retrieve the UoM for a specified attribute in the

WeatherForecastItemsController

6.3 Azure SQL database

To create the database table the Add-migration tool was used in Visual Studio. How to use

this tool is described on the web page Migrations Overview by Mono [60]. The migrations

also must be applied to the database. How to do this is explained on the web page Applying

Migrations by Mono [61].

The tables added to the Azure database using the Add-Migration and Update-Database

functionality are shown in figure 6.9.

Historical data was added to the production database running the code used for the in-

memory database once. The historical data in the Data.xlsx file was loaded to the database.

21

Figure 6.9: Table structure of tables added to database from Visual Studio using Add-Migration and Update-

Database functionality

6.4 Azure app service for web API

When the code for the DatabaseWebAPI was finished, it was published to Azure using Visual

Studio. How to deploy an application to Azure app service is described on the web page

“Quickstart: Deploy an ASP.NET web app” by Microsoft [62]. Since we were publishing a

web API some more options were available, and we selected to skip the API management

option.

6.5 Testing of web API

Testing of the web API on Azure was done using Postman [63] and the mobile application.

All the API requests used in the application were tested from both.

22

7 AI prediction model using ChatGPT 3.5

and Azure web API
This chapter describes how the AI prediction model is implemented, using ChatGPT 3.5 with

Azure AI Studio to forecast energy consumption based on weather forecast and building data

from the Azure SQL database via its API.

7.1 Overview of the prediction model

The task of the AI prediction model is to forecast the energy consumption of the customer’s

building for the next week. This is done by utilizing historical weather and energy

consumption data to train the model for the specific customer. The model therefore requires

some historical data to be able to predict. The more data the more accurate the prediction will

be. To limit over usage the request will only be sent if similar data does not already exist in

the database. For each request the model will return the prediction for the following week,

based on weather forecast. The predictions are then stored back into the Azure SQL Database

via the API.

7.2 Using Azure AI Studio

As described in chapter 3, Azure AI Studio was selected to be used with the ChatGPT 3.5

model. To do this an instance of the ChatGPT 3.5 model was created in the Azure AI Studio.

To secure the AI prediction we are using API keys and authentication settings to allow secure

connection between the API and the application. The model is then ready to be used with a

train-as-you-go approach. Meaning the model will not be pre trained, but it will be supplied

with training data for each request. This is possible because of the speed this large language

model delivers.

Azure AI Studio provides monitoring tools to track error rates or API usage as shown in

Figure 7.1. This gives insight into the frequency the app is being used by customers.

Integration with other Azure services, like the Azure SQL Database ensures a smooth data

flow between the model and the rest of the application.

23

Figure 7.1 Prediction API Usage for 14 days

In addition to error and usage overview Azure AI Studio also displays accumulated as well as

per day cost. The displayed cost in Figure 7.2 represents the 93 first request used in the

development stage.

Figure 7.2 Accumulated cost of prediction model for 93 requests

7.3 Generating predictions with ChatGPT 3.5

The process of generating predictions with ChatGPT 3.5 involves multiple steps, from data

retrieval to API request formatting, and output handling.

24

1. Data Preparation

- Data is extracted from the SQL database. All relevant data could be included

but in the development stage only historic outside temperature and energy

consumption is used.

- Data is extracted from the weather forecast API and used as inputs for the

trained model.

2. API Request input

The API request consists of a message and some parameters. The message includes a

system and a user role. The system role provides context or guidelines for the model’s

behavior. In Figure 7.3 it is shown that the system role is specifically designed to only

return values in a JSON format.

Figure 7.3 Prediction API input message

The data included in the variable promptData from Figure 7.3 will be all the data the

model will use to train. In the development stage this includes all dates were both

outside temperature and energy consumption is stored in the database. The data is

given in this format:

Date: 2024-09-01, Temperature: 13,7°C, Energy Consumption: 24,96 kWh

Date: 2024-09-02, Temperature: 11°C, Energy Consumption: 24,96 kWh

Date: 2024-09-03, Temperature: 13,6°C, Energy Consumption: 24,96 kWh

…

Date: 2024-11-11, Temperature: 1°C, Energy Consumption: 78,36 kWh

Date: 2024-11-12, Temperature: 0,3°C, Energy Consumption: 87,33 kWh

25

The variable predictionData includes the days and data the model will use as in inputs

for the predictions. This is given in this format:

Date: 2024-11-15, Average Temperature: 8,10°C

Date: 2024-11-16, Average Temperature: 6,46°C

Date: 2024-11-17, Average Temperature: 4,40°C

Date: 2024-11-18, Average Temperature: 0,00°C

Date: 2024-11-19, Average Temperature: -2,22°C

Date: 2024-11-20, Average Temperature: -0,48°C

Date: 2024-11-21, Average Temperature: -2,03°C

3. Handling prediction output

Once ChatGPT 3.5 returns a response, the model’s output would be like:

"predictions":

[

 { "date": "2024-11-15", "consumption": 62.43 },

 { "date": "2024-11-16", "consumption": 64.85 },

 { "date": "2024-11-17", "consumption": 71.83 },

 { "date": "2024-11-18", "consumption": 76.35 },

 { "date": "2024-11-19", "consumption": 82.38 },

 { "date": "2024-11-20", "consumption": 78.11 },

 { "date": "2024-11-21", "consumption": 80.21 },

]

The response is parsed, and the predicted values are stored in the database. Each row

includes a timestamp for the prediction, making it easy to track and retrieve specific

forecasts.

26

8 Development of the mobile application
In this chapter the development of the mobile application is described. The mobile

application will present the current and historical building data and weather data and allow

the user to request a prediction for the future energy consumption.

8.1 Detailed system sketch over energy prediction system

In figure 8.1 a detailed system sketch over the energy prediction system is shown.

Figure 8.1: Detailed system sketch of the energy prediction system with applications and services including

necessary APIs

In this first version of the mobile application the data handling application is included in the

application. In later versions the recommendation is to develop this as a separate application

to be hosted on a server or a cloud service.

In this more detailed system sketch figure 8.1, compared to figure 1.1, the APIs for the

ChatGPT 3.5 AI model and the Azure SQL cloud databases are shown. The mobile

27

application and the data handling application is not communicating directly to the AI model

or the database. All communication goes through the designated API.

This is the same for the MET Weather API [2], but this is developed by the Norwegian

Metrological Institute.

8.2 FURPS+ for mobile application

FURPS+ has been used to collect requirements for the application. FURPS+ is described in

chapter 6.2.3 of the book Lecture notes for object-oriented analysis, design, and programming

using UML and C# [64].

1) F – Functional requirements

i) The current data (latest entry into database) should be displayed in the application as a

dashboard.

ii) For each data element a historical log of the data should be presented in the

application when selected.

iii) An prediction of the energy consumption of the next period is to be shown in the

application using an artificial intelligence generated estimation model.

iv) The data should be stored in an online database that could be updated from an

external building management system (updating the database is not part of this

project).

2) U – Usability

i) The data displayed in the dashboard should be updated regularly.

ii) If multiple sensors exist for one data element, the data should be displayed as an

average or sum depending on the data element in the dashboard.

iii) If multiple sensors exist for one data element, the data elements should be displayed

individually when clicking on the data element.

iv) When selecting one data element the historical log should be presented in the

application as a graph.

v) The date and time of the estimation of the energy consumption and the period should

be shown together with the estimation in the application.

vi) The period for the estimation of the energy consumption is normally the coming

seven days.

3) R – Reliability

i) The database should be able to be written and read at any time outside of announced

maintenance windows.

ii) The prediction of the energy consumption can only be updated once per 24 hours

without payment.

iii) The access to weather data is only available when the weather data source is

available.

4) P – Performance

i) The application should be able to load the current data within 30 seconds.

5) S – supportability

i) The app should be available for both Android and iOS mobile units.

6) + Design challenges/limitations

28

8.3 Use case diagram for mobile application

The use case diagram in figure 8.2 illustrates the primary interactions between the mobile

application, the user and external systems. The mobile application allows the user to view

weather and energy consumption both historical and future predictions. Each of these data

sources are retrieved from external sources.

Figure 8.2: Use case diagram for mobile application

8.4 Use case: Get weather data

The goal of the use case “Get weather data” is to fetch future weather forecasts from the

Norwegian Meteorological Institute [2] through an API. This use case is essential for

applications like energy consumption predictions to supply necessary data. The use case is

described in the “Fully Dressed Use Case Document” in Table 8.1 and the system sequence

diagram in Figure 8.3.

29

Table 8.1: FDUCD for use case: Get weather data

30

Figure 8.3: System sequence diagram for use case: Get weather data

For the use case a class called WeatherService.cs is created to request data from the API. The

API requires a name of the application and an email address. This information is added to the

header of the client in the constructor of the class as shown in Figure 8.4. Later a method

called GetWeatherDataListAsync shown in Figure 8.5, that takes longitude, latitude and

altitude as inputs, sends a request to the API. The returned information is parsed into

elements of the class WeatherForecastItem.cs shown in Figure 8.6.

Figure 8.4: Class WeatherService constructor in WeatherService.cs

Figure 8.5: Method GetWeatherDataListAsync in WeatherService.cs

31

Figure 8.6: Class WeatherForecastItem in classes

8.5 Use case: Get database data

The goal of this use case is to retrieve data stored in cloud database. To make the Azure SLQ

database available a web API is being used.

In this use case, the DatabaseWebAPIServices class serves as the primary service between the

client application and the database API. By encapsulating API requests, it allows the client

application to retrieve multiple data types from a database via the API without direct database

interaction.

In figure 8.7 the sequence diagram of the request is shown.

32

Figure 8.7: Sequence diagram for use case: Get database data

In table 8.2 the use case document for the get database data is shown.

33

Table 8.2: FDUCD for use case: Get database data

There is used a general framework for all the get requests except one. The general framework

code is shown in figure 8.8.

34

Figure 8.8: Snip of code for the framework for getting data from the database via the database API

In this code a uniform resource locator (URL) is defined as parameter for the GetAsync

method. This URL is the request URL for the database API. The response is in JSON-format

and converted using the JsonConvert class. The result is returned or if no response an error is

thrown to the user interface.

In figure 8.9 a snip of one of the methods used to request specific data from the database API

using the general GetAsync method.

Figure 8.9: Snip of code showing the GetBuildingTempsAsync using the GetAsync method to request data form

the database API

The URL received as a parameter from the GetBuildingTempsAsync is used as a parameter

for the general GetAsync method.

The methods, in other parts of the application, used to call the methods in the

DatabaseWebAPIServices are varying since the requests and responses are varying. In figure

8.10 an example of the code that could be used to call the GetBuildingTempsAsync method is

shown.

35

Figure 8.10: Snip of code showing the call of the GetBuildingTempsAsync method

In this code you can see the generation of the URL using the BaseApiUrl and the extension

needed to request the building temperature items defined in the database API. It also shows

how the converted JSON data is shown in a list view and the content of the error message if

the method failed.

The method for getting the unit of measure (UoM) for one attribute in the table containing

UoMs for the weather forecast is a little different than the others. The reason for this is that in

addition to the URL the name of the attribute is included as a parameter for the method. The

code for the method is shown in figure 8.11.

Figure 8.11: Snip of code for the GetUoMForAttributeAsync method

As we can see from the code the method has two parameters. This is the URL and the

attribute parameters. These are combined and used to create the request URL for database

API. The response UoM is returned as a text string.

8.6 Use case: Post database data

The goal of this use case is to store data in the cloud database. To make the Azure SQL

database available a web API is being used.

36

In this use case, the DatabaseWebAPIServices class serves as the primary service between the

client application and the database API. By encapsulating API requests, it allows the client

application to post multiple data types from a database via the API without direct database

interaction.

In figure 8.12 the system sequence diagram for the post database use case is shown.

Figure 8.12: System sequence diagram for the use case: Post database data

In table 8.3 the use case document for the post database data is shown.

37

Table 8.3: FDUCD for use case: Post database data

38

There is used a general framework for all the post request methods. The general framework is

shown in figure 8.13.

Figure 8.13: Snip of code for the framework for posting data to the database via database API

In this code the PostAsync method is getting the request URL and data as parameters. These

are converted to JSON data using the JsonConvert method. If the post request is successful,

the response is returned or if not, an error is thrown.

In figure 8.14 a snip of one of the methods used to request specific data from the database

API using the general PostAsync method.

Figure 8.14: Snip of code showing the PostBuildingTemperatureAsync using the PostAsync method to request

data form the database API

The URL received as a parameter from the PostBuildingTemperatureAsync is used as a

parameter for the general PostAsync method.

8.7 Use case: View current data

The purpose of this use case is to display the most recent data on the GUI. The application

should provide users with latest sampled data, showing the latest readings for temperature,

humidity, energy consumption, and the predicted energy consumption.

39

Table 8.4: FDUCD for use case: view current data

In figure 8.15 the system sequence diagram for the view current data use case is shown.

40

Figure 8.15: System sequence diagram view current data

When the application is started, a background task named

startReadSensorDataBackgroundTask is initiated. This task is executed once every minute

and ensures cyclic request of current sensor data.

This background task is called from the GetSensorData method, which is part of the

ReadSensors class. This method interacts with the DatabaseWebAPIServices class to fetch

the latest sensor data. The retrieved data is used by the LiveSensorData class which is

responsible for presenting the data on the GUI.

Figure 8.16: Background task polling current sensor data

41

Figure 8.16 shows the implementation for the background task that polls sensor data every

minute. This method is defined within the App.xaml.cs class, which is the class that initializes

the application and is the entry point for the application logic.

Figure 8.17: Public static variable storing current sensor data

As seen in figure 8.17, the sensor values are stored in SensorValues object, which is an

instance of the ReadSensors class. The object is declared public, so that other classes can

access the sensor data.

The getSensorData method is seen in figure 8.18. This method is cyclically called from the

startReadSensorDataBackgroundTask. This method also calls other methods that is fetching

historical data.

Figure 8.18: getSensorData from ReadSensors class

Figure 8.19 shows the GetLatestBuildingTemp method which retrieves the most recent

temperature data. It sends a request to the datebaseWebAPIServices class using the

GetLatestBuildingTempAsync method.

Figure 8.19: getLatestBuildingTemp method from ReadSensors Class

42

The fetched data is stored in the following class defined from within the ReadSensors class.

Figure 8.20: Livesensors class, used for storing latest sensor data

8.8 Use case: View historical data

The purpose of this use case is to display historical data. The application should provide users

with historical sampled data, including historical temperature, humidity, energy consumption,

and predicted energy consumption.

43

Table 8.5 FDUCD for use case: View historical data

Figure 8.21 shows the system sequence diagram for the view historical data use case.

Figure 8.21: System sequence diagram view historical data

44

When the application is started, a background task named

startReadSensorDataBackgroundTask is initiated. This task is executed once every minute

and ensures cyclic request of historical data. This background task uses the GetSensorData

method, which is part of the ReadSensors class. This method interacts with the

DatabaseWebAPIServices class to fetch the historical data.

The retrieved data is used by the class LiveSensorData, which initiates plotting of user

selected sensor by using the class named HistoricalData which is responsible for presenting

the data on the GUI. The plot function uses the syncfusion Maui charts library to plot.

The startReadSensorDataBackgroundTask and GetSensorData methods were shown in detail

for the use case view current data.

Figure 8.19 shows the method named GetAllBuildingRelHum which is called from the

LiveSensorData class. It makes an API request of humidity data to the

databaseWebAPIServices class.

Figure 8.22: Livesensors class, used for fetching and storing historical humidity data

The retrieved data is stored in the following class defined from within the ReadSensors class.

Figure 8.23: HistoricData class, storing arrays historical data

45

Figure 8.24 shows the function that is responsible for initiating plotting of one of the

temperature sensors. The function is defined within the LiveSensorData class and is called

when the user touches the label. Touching the label creates a instance of the HistoricalData

class, with corresponding sensor values, timestamps, name and unit as input.

Figure 8.24: Plotting sensor when tapping label on GUI

Figure 8.25 shows the method for plotting the graph on the GUI.

Figure 8.25: HistoricData class, storing arrays historical data

8.9 Use case: Predict future energy consumption

The purpose of the use case “Predict future energy consumption” is to fetch predictions of the

energy consumption in the given residence based on previous historical data as well as future

weather forecasts. This is done through an API-request to a GPT3.5 model running on azure

AI services. The returned data is pushed to the database, pulled to the mobile application and

displayed in the energy page. Details of the use case can be found in the FDUCD in Table 8.6

and the sequence diagram in figure 8.23.

46

Table 8.6 FDUCD for use case: Predict future energy consumption

47

Figure 8.23: Sequence diagram for the predict future energy consumption

The use case is based on the method GetEnergyConsumptionPredictionAsync that collects

training data from the database and weather forecast based on dates given as an input. It then

constructs this into a large input prompt for the ai model and returns the content of the reply.

The first few lines of the method where data is collected is shown in figure 8.24. This method

will collect prediction for multiple days ahead in one request, and it will only run if the

requested data is not already present in the database. This is to minimize unnecessary

requests and reduce costs.

Figure 8.24 Method GetEnergyConsumptionPredictionAsync

48

9 Results of mobile application
development

In this chapter the results of the project will be presented. This will focus on the presentation

of information in the mobile application. The database API with the SQL database and the AI

energy prediction model has no interface directly to the user, but data received from these

services are presented in the mobile application.

9.1 Main page of mobile application

In the main page of the mobile application a dashboard with current values is displayed. The

current values are the latest values that are updated in the database.

For the indoor environment in the building the average temperature and relative humidity for

the latest set of measurements are shown. This data would be based on sensors in the

building.

For the outdoor environment the latest temperature and relative humidity for the location of

the building is shown based on the current values of the latest forecast received. Since there

were not outdoor sensors at the selected building, the data presented is based on the forecast

received from the weather forecast API.

Under energy, the latest energy value from the energy meter in the building is shown and in

addition the energy prediction for the first day of the latest energy prediction.

There is also a drop-down menu on the top of the page where you can select to navigate to

the different pages directly.

In the following pages the following pictures and screenshots are shown:

• Figure 9.1 is a picture of Samsung Galaxy S21 Ultra running application displaying

the main page.

• Figure 9.2 is a screenshot of the main page of application on a physical Samsung

Galaxy S21 Ultra.

• Figure 9.3 is a screenshot of the drop-down list of main page on a physical Samsung

Galaxy S21 Ultra

• Figure 9.4 is a screenshot of the main page of application on WinUI running on a

laptop.

• Figure 9.5 is a screenshot of the drop-down list of main page on WinUI running on a

laptop.

• Figure 9.6 is a screenshot of the main page of application on an iPhone 16 simulator

running on a laptop.

• Figure 9.7 is a screenshot of the drop-down list of main page on an iPhone 16

simulator running on a laptop.

49

Figure 9.1: Picture of Samsung Galaxy S21 Ultra running application displaying the main page

Figure 9.2: Screenshot of the main page of application on a physical Samsung Galaxy S21 Ultra

50

Figure 9.3: Screenshot of the drop-down list of main page on a physical Samsung Galaxy S21 Ultra

Figure 9.4: Screenshot of the main page of application on WinUI running on a laptop

51

Figure 9.5: Screenshot of the drop-down list of main page on WinUI running on a laptop

Figure 9.6: Screenshot of the main page of application on an iPhone 16 simulator running on a laptop

52

Figure 9.7: Screenshot of the drop-down list of main page on an iPhone 16 simulator running on a laptop

9.2 Page to present current data received from database API

When in the main page click on the indoor temperature or humidity field, or by selecting the

sensor data from the drop-down menu, a page showing the current (latest posted) data

retrieve from the SQL database.

For the building used in the project it is five temperatures for different rooms, four humidity

values for different rooms, and one energy meter for building. In the bottom of each group

that date and time of the last posting into the database is shown. At the time of this report the

data in the database is not being updated directly from the building control system, but

manually entered.

If you in this page click on one of the values, a page with an historical graph will open. This

page is described and shown in chapter 9.4 of this report.

In the following pages the following screenshots are shown:

• Figure 9.8 is a screenshot of the sensor data page on physical Samsung Galaxy S21

Ultra.

• Figure 9.9 is a screenshot of the sensor data page of application in WinUI running on

a laptop.

• Figure 9.10 is a screenshot of the sensor data page of the application on an iPhone 16

simulator running on a laptop.

53

Figure 9.8: Screenshot of the sensor data page on physical Samsung Galaxy S21 Ultra

Figure 9.9: Screenshot of the sensor data page of application in WinUI running on a laptop

54

Figure 9.10: Screenshot of the sensor data page of application on an iPhone 16 simulator running on a laptop

9.3 Page to present current data received from weather
forecast API

If you on the main page click on the outdoor temperature or humidity values, or select

weather data from the drop-down menu, you will open a page that displays the latest weather

data in the database. The application will try to collect weather data when the application is

started and every hour when it is running.

The weather data displayed in the page is a selection of the data available in the MET

weather API locationforecast [41].

If you in this page, click on one of the values, a graph showing the historical values for this

parameter will be shown. This page is described in chapter 9.4 of this report.

In the following pages the following screenshots are shown:

• Figure 9.11 is a screenshot of the current weather data page on physical Samsung

Galaxy S21 Ultra.

• Figure 9.12 is a screenshot of the current weather data page of application in WinUI

running on a laptop.

• Figure 9.13 is a screenshot of the current weather data page of application on an

iPhone 16 simulator running on a laptop.

55

Figure 9.11: Screenshot of the current weather data page on physical Samsung Galaxy S21 Ultra

Figure 9.12: Screenshot of the current weather data page of application in WinUI running on a laptop

56

Figure 9.13: Screenshot of the current weather data page of application on an iPhone 16 simulator running on a

laptop

9.4 Examples of pages showing graphs of historical data

When clicking on values in the main, sensor data, and current weather pages, a historical

graph of these values will be shown. In the version of the application at the time of this

report, the graph is for a fixed period.

In the following pages the following screenshots are shown:

• Figure 9.14 is a screenshot of a historical graph of energy consumption displayed on a

physical Samsung Galaxy S21 Ultra.

• Figure 9.15 is a screenshot of a historical graph of energy consumption displayed on a

physical Samsung Galaxy S21 Ultra while flipped.

• Figure 9.16 is a screenshot of a historical graph of temperature on second floor

displayed on a physical Samsung Galaxy S21 Ultra while flipped.

• Figure 9.17 is a screenshot of a historical graph of energy consumption displayed in

WinUI running on a laptop.

• Figure 9.18 is a screenshot of a historical graph of temperature on first floor displayed

in WinUI running on a laptop.

• Figure 9.19 is a screenshot of a historical graph of relative humidity in the office

displayed on an iPhone 16 simulator running on a laptop.

• Figure 9.20 is a screenshot of a historical graph of outside temperature displayed on

an iPhone 16 simulator while flipped running on a laptop.

57

Figure 9.14: Screenshot of a historical graph of energy consumption displayed on a physical Samsung Galaxy

S21 Ultra

Figure 9.15: Screenshot of a historical graph of energy consumption displayed on a physical Samsung Galaxy

S21 Ultra while flipped

58

Figure 9.16: Screenshot of a historical graph of temperature on second floor displayed on a physical Samsung

Galaxy S21 Ultra while flipped

Figure 9.17: Screenshot of a historical graph of energy consumption displayed in WinUI running on a laptop

59

Figure 9.18: Screenshot of a historical graph of temperature on first floor displayed in WinUI running on a

laptop

Figure 9.19: Screenshot of a historical graph of relative humidity in the office displayed on an iPhone 16

simulator running on a laptop

60

Figure 9.20: Screenshot of a historical graph of outside temperature displayed on an iPhone 16 simulator while

flipped running on a laptop

9.5 Page to present latest energy prediction made by the AI
model

If you in the main page click on the predicted energy value, or select energy from the drop-

down menu, the predicted energy consumption page will be displayed.

This page displays the predicted energy consumption for the building over the next seven

days and the time the prediction was run.

In the following pages the following screenshots are shown:

• Figure 9.21 is a screenshot of the predicted energy consumption page on a physical

Samsung Galaxy S21 Ultra.

• Figure 9.22 is a screenshot of the predicted energy consumption page displayed in

WinUI running on a laptop.

• Figure 9.23 is a screenshot of the predicted energy consumption page of application

on an iPhone 16 simulator running on a laptop.

61

Figure 9.21: Screenshot of the predicted energy consumption page on a physical Samsung Galaxy S21 Ultra

Figure 9.22: Screenshot of the predicted energy consumption page displayed in WinUI running on a laptop

62

Figure 9.23: Screenshot of the predicted energy consumption page of application on an iPhone 16 simulator

running on a laptop

63

10 Discussion and conclusion of mobile
application development project

The target for the project was to do an AI-driven development of open-source, cross-platform

mobile application for sensor data monitoring av analysis as described in the project description

[1].

The project focused on an application for energy prediction of a building using existing sensors

in the building and weather forecasts from online sources. In addition to the prediction of

energy consumption, actual data are displayed in the application. There is also the possibility

to show historical data in graphs. The control system of the building and the storing of data

from the building to the database has not been part of the project.

The first version of the application was successfully created using Visual Studio and the .NET

MAUI framework. The resulting application and its GUI is described in this report. In addition

to the application, an Azure SQL database with a web API has been created, and a ChatGPT

3.5 AI prediction model has also been made available using Azure. The application is also

using the MET weather API’s locationforecast [41] to collect weather forecast information.

The development of these services and the development of the mobile application is described

in this report.

At the end of this project, we have a functioning cross-platform that is tested in emulators, for

Android, iOS, and WinUI, and on a physical Android device.

The development of the application is not complete and further development is needed. Our

suggestion for further development is focused on the following areas.

In the first version the mobile application contains both the GUI layer and application layer. A

split of these is suggested in the report.

The user interface could be improved both graphically and on usability of the application.

Things like adapting better to different screen sizes is one suggestion from the project team.

The possibility to give the user the ability to customize the information displayed could give a

better user experience.

The current application is developed focused on one building. The mobile application and its

services could be improved for better scalability so that it quickly can be adapted to different

buildings by simple configuration. Also, the infrastructure of the system should be studied with

focus to improve scalability.

The connection between the buildings control system and the Azure SQL database was not part

of this project and should be further developed.

The application as currently developed relies on cloud services. There should be studied if any

offline functionality is needed.

64

11 References

[1] S. Mylvaganam, "Project Description," University of South-Eastern Norway,

Porsgrunn, 2024.

[2] The Norwegian Meterological Institute, "Welcome to the MET Weather API," The

Norwegian Meterological Institute, [Online]. Available: https://api.met.no/.

[Accessed 06 10 2024].

[3] OpenAI, "Introducing ChatGPT," Open AI, [Online]. Available:

https://openai.com/index/chatgpt/. [Accessed 03 11 2024].

[4] Backlinko, "iPhone vs. Android User & Revenue Statistics (2024)," Backlinko,

[Online]. Available: https://backlinko.com/iphone-vs-android-statistics. [Accessed 29

09 2024].

[5] Android Developers, "Meet Android Studio," Android Developers, [Online].

Available: https://developer.android.com/studio/intro. [Accessed 11 11 2024].

[6] E. K. Ekren, "What Is Xcode and How to Use It?," Netguru, 25 05 2024. [Online].

Available: https://www.netguru.com/blog/what-is-xcode-and-how-to-use-it.

[Accessed 11 11 2024].

[7] R. Sheldon, "What is the iOS software development kit (iOS SDK)?," TechTarget,

[Online]. Available:

https://www.techtarget.com/searchmobilecomputing/definition/iOS-developer-kit.

[Accessed 11 11 2024].

[8] Reactive Native, "React Native · Learn once, write anywhere," Reactive Native,

[Online]. Available: https://reactnative.dev/. [Accessed 29 09 2024].

[9] Microsoft, ".NET Multi-platform App UI (.NET MAUI) | .NET," Microsoft,

[Online]. Available: https://dotnet.microsoft.com/en-us/apps/maui. [Accessed 29 09

2024].

[10] Stack Overflow, "Why Flutter is the most popular cross-platform mobile SDK,"

Stack Overflow, [Online]. Available: https://stackoverflow.blog/2022/02/21/why-

flutter-is-the-most-popular-cross-platform-mobile-sdk/. [Accessed 29 09 2024].

[11] Solar 2D, "Solar2D Documentation — Developer Guides | Getting Started," Solar

2D, [Online]. Available:

https://docs.coronalabs.com/guide/programming/intro/index.html#whatis. [Accessed

29 09 2024].

[12] Wikipedia, "Autoregressive integrated moving average," Wikipedia, 27 05 2024.

[Online]. Available:

65

https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average. [Accessed

14 09 2024].

[13] J. Brownlee, "A Gentle Introduction to Exponential Smoothing for Time Series

Forecasting in Python," machinelearningmastery.com, 12 04 2020. [Online].

Available: https://machinelearningmastery.com/exponential-smoothing-for-time-

series-forecasting-in-python/. [Accessed 14 09 2024].

[14] W. Yu and J. Gonzalez, "Non-linear system modeling using LSTM neural networks,"

sciencedirect.com, 31 08 2018. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2405896318310814. [Accessed

14 09 2024].

[15] M. Rahman, "Different ways to combine CNN and LSTM networks for time series

classification tasks," medium.com, 04 12 2022. [Online]. Available:

https://medium.com/@mijanr/different-ways-to-combine-cnn-and-lstm-networks-for-

time-series-classification-tasks-b03fc37e91b6. [Accessed 14 09 2024].

[16] GPT-4o, "ChatGPT," OpenAI, [Online]. Available: https://chatgpt.com. [Accessed

28 09 2024].

[17] Copilot, "GitHub Copilot," GitHub, [Online]. Available:

https://github.com/features/copilot. [Accessed 28 09 2024].

[18] A. Forecast, "Aws Amazon," Amazon, [Online]. Available:

https://aws.amazon.com/forecast/. [Accessed 28 09 2024].

[19] AutoML, "Google Cloud," Google, [Online]. Available:

https://cloud.google.com/automl. [Accessed 28 09 2024].

[20] A. AI, "Azure AI Studio," Microsoft, [Online]. Available:

https://portal.azure.com/#browse/Microsoft.MachineLearningServices%2Faistudio.

[Accessed 28 09 2024].

[21] V. Kaushik, "Best AI Tools for Programmers," medium.com, 16 04 2024. [Online].

Available: https://medium.com/@kaushikvikas/various-ai-tools-for-programmers-an-

in-depth-analysis-e4ddc1cde88d. [Accessed 17 11 2024].

[22] GitHub, "GitHub Copilot - Your AI pair programmer," GitHub, 2024. [Online].

Available: https://github.com/features/copilot. [Accessed 17 11 2024].

[23] Insight7, "How to Use AI to Write Reports: A Guide," Insight7, 16 07 2024.

[Online]. Available: https://insight7.io/how-to-use-ai-to-write-reports-a-guide/.

[Accessed 17 11 2024].

[24] V. Angelova, "Top 7 Best Free Weather Forecast APIs to Access Global Weather

Data in 2024," Weatherstack, 23 06 2024. [Online]. Available:

66

https://blog.weatherstack.com/blog/top-7-best-free-weather-forecast-apis-to-access-

global-weather-data/. [Accessed 06 10 2024].

[25] Weatherstack, "Weatherstack - Real-Time World Weather REST API,"

Weatherstack, [Online]. Available: https://weatherstack.com/. [Accessed 06 10

2024].

[26] Weatherstack, "Weatherstack API Pricing Plans," Weatherstack, [Online]. Available:

https://weatherstack.com/product. [Accessed 06 10 2024].

[27] OpenWeather, "Current weather and forecast - OpenWeatherMap," OpenWeather,

[Online]. Available: https://openweathermap.org/. [Accessed 06 10 2024].

[28] OpenWeather, "Pricing - OpenWeather," OpenWeather, [Online]. Available:

https://openweather.co.uk/pricing-corp. [Accessed 06 10 2024].

[29] Weatherbit, "Free Weather API | Weatherbit," Weatherbit, [Online]. Available:

https://www.weatherbit.io/. [Accessed 06 10 2024].

[30] Weatherbit, "Weatherbit API - Pricing," Weatherbit, [Online]. Available:

https://www.weatherbit.io/pricing. [Accessed 06 10 2024].

[31] AccuWeather, "Local, National, & Global Daily Weather Forecast | AccuWeather,"

AccuWeather, [Online]. Available: https://www.accuweather.com/. [Accessed 06 10

2024].

[32] AccuWeather, "AccuWeather APIs | Packages," AccuWeather, [Online]. Available:

https://developer.accuweather.com/packages. [Accessed 06 10 2024].

[33] Tomorrow.io, "The World’s Weather Intelligence Platform," Tomorrow.io, [Online].

Available: https://www.tomorrow.io/. [Accessed 06 10 2024].

[34] Tomorrow.io, "Weather API," Tomorrow.io, [Online]. Available:

https://www.tomorrow.io/weather-api/. [Accessed 06 10 2024].

[35] Visual Crossing, "Weather Data & Weather API | Visual Crossing," Visual Crossing,

[Online]. Available: https://www.visualcrossing.com/. [Accessed 06 10 2024].

[36] Visual Crossing, "Weather Data & Weather API Pricing | Visual Crossing," Visual

Crossing, [Online]. Available: https://www.visualcrossing.com/weather-data-

editions. [Accessed 06 10 2024].

[37] The Weather Company, "The World’s Leading Weather Provider," The Weather

Company, [Online]. Available: https://www.weathercompany.com/. [Accessed 06 10

2024].

67

[38] Standard Norge, "SN-NSPEK 3031:2023," Standard Norge, 07 07 2023. [Online].

Available: https://lese.standard.no/product/2548419?langUI=nb&filePath=76d9c61c-

bcea-432f-ba2d-a22969f627a9.pdf&fileType=Pdf. [Accessed 29 09 2024].

[39] World Meteorological Organization, "Guide to Instruments and Methods of

Observation (WMO-No. 8) | World Meteorological Organization," World

Meteorological Organization, [Online]. Available:

https://community.wmo.int/en/activity-areas/imop/wmo-no_8. [Accessed 06 10

2024].

[40] The Norwegian Meteorological Institute, "met.no/en," The Norwegian

Meteorological Institute, [Online]. Available: https://www.met.no/en. [Accessed 06

10 2024].

[41] The Norwegian Meteorological Institute, "Locationforecast," The Norwegian

Meteorological Institute, [Online]. Available:

https://api.met.no/weatherapi/locationforecast/2.0/documentation. [Accessed 06 10

2024].

[42] The Norwegian Meteorological Institute, "THREDDS dataset archive landing page,"

The Norwegian Meteorological Institute, [Online]. Available:

https://api.met.no/product/THREDDS. [Accessed 06 10 2024].

[43] Direktoratet for byggkvalitet, "Byggteknisk forskrift (TEK17) med veiledning,"

Direktoratet for byggkvalitet, 29 09 2024. [Online]. Available:

https://www.dibk.no/regelverk/byggteknisk-forskrift-tek17.

[44] Norwegian Building Authority, "Regulations on technical requirements for

construction works," 07 2017. [Online]. Available:

https://www.dibk.no/globalassets/byggeregler/regulation-on-technical-requirements-

for-construction-works--technical-regulations.pdf. [Accessed 29 09 2024].

[45] Direktoratet for byggkvalitet, "Innledning til kapittel 13 Inneklima og helse,"

Direktoratet for byggkvalitet, 29 09 2024. [Online]. Available:

https://www.dibk.no/regelverk/byggteknisk-forskrift-tek17/13/i/innledning.

[46] Direktoratet for byggkvalitet, "Innledning til kapittel 14 Energi," Direktoratet for

byggkvalitet, 29 09 2024. [Online]. Available:

https://www.dibk.no/regelverk/byggteknisk-forskrift-tek17/14/innledning-til-kapittel-

14-energi.

[47] Direktoratet for byggkvalitet, "§ 14-2. Krav til energieffektivitet," Direktoratet for

byggkvalitet, [Online]. Available: https://www.dibk.no/regelverk/byggteknisk-

forskrift-tek17/14/14-2. [Accessed 29 09 2024].

[48] Direktoratet for byggkvalitet, "§ 14-3. Minimumsnivå for energieffektivitet,"

Direktoratet for byggkvalitet, [Online]. Available:

68

https://www.dibk.no/regelverk/byggteknisk-forskrift-tek17/14/14-3. [Accessed 29 09

2024].

[49] Standard Norge, "NS 3031:2014," Standard Norge, [Online]. Available:

https://online.standard.no/nb/ns-3031-2014. [Accessed 29 09 2024].

[50] Direktoratet for byggkvalitet, "§ 14-4. Krav til løsninger for energiforsyning,"

Direktoratet for byggkvalitet, [Online]. Available:

https://www.dibk.no/regelverk/byggteknisk-forskrift-tek17/14/14-4. [Accessed 29 09

2024].

[51] Standard Norge, "NS 3031 Beregning av bygningers energiytelse er trukket tilbake,

men vises fortsatt til i byggteknisk forskrift," Standard Norge, 29 09 2021. [Online].

Available: https://standard.no/fagomrader/energi-og-klima-i-bygg/bygningsenergi/ns-

3031-beregning-av-bygningers-energiytelse-er-trukket-tilbake-men-vises-fortsatt-til-

i-byggteknisk-forskrift/. [Accessed 29 09 2024].

[52] Standard Norge, "NS-EN ISO 52000-1:2017," 01 10 2017. [Online]. Available:

https://lese.standard.no/product/2520509?langUI=en&filePath=35443749-c0b8-

4990-b452-6f2ec6ed2c1c.pdf&fileType=Pdf. [Accessed 29 09 2024].

[53] Standard Norge, "NS-EN ISO 15927-4:2005," 11 2005. [Online]. Available:

https://lese.standard.no/product/2523705/en?langUI=nb. [Accessed 29 09 2024].

[54] Standard Norge, "NS-EN 16798-1:2019," 09 04 2024. [Online]. Available:

https://lese.standard.no/product/2535947/en?langUI=nb. [Accessed 29 09 2024].

[55] Standard Norge, "NS-EN 15192-1:2017+A1," 13 07 2021. [Online]. Available:

https://lese.standard.no/product/2545777?langUI=nb&filePath=3f0b1b9f-58e1-4720-

a7a3-9177a65b760e.pdf&fileType=Pdf. [Accessed 29 09 2024].

[56] WilliamDAssafMSFT, "Create a single database - Azure SQL Database," Microsoft,

18 09 2024. [Online]. Available: https://learn.microsoft.com/en-us/azure/azure-

sql/database/single-database-create-quickstart?view=azuresql. [Accessed 10 11

2024].

[57] Microsoft, "Tutorial: Create a web API with ASP.NET Core," Microsoft, 23 08 2024.

[Online]. Available: https://learn.microsoft.com/en-us/aspnet/core/tutorials/first-web-

api?view=aspnetcore-8.0. [Accessed 13 10 2024].

[58] Microsoft, "Connect to and query Azure SQL Database using .NET and the

Microsoft.Data.SqlClient library - Azure SQL Database," Microsoft, 17 09 2024.

[Online]. Available: https://learn.microsoft.com/en-us/azure/azure-

sql/database/azure-sql-dotnet-quickstart?view=azuresql. [Accessed 13 10 2024].

[59] Swagger, "SwaggerHub | API Design & Documentation Tool," [Online]. Available:

https://swagger.io/tools/swaggerhub/?utm_source=aw&utm_medium=ppcg&utm_ca

mpaign=SEM_SwaggerHub_PR_EMEA_ENG_EXT_Prospecting_Tier2&utm_term

69

=swagger&utm_content=665457100535&gad_source=1&gclid=Cj0KCQiA0MG5Bh

D1ARIsAEcZtwRuzNFZ6YeKVKXvNpCfCza8u1VzJOV3O5gKawI9A. [Accessed

10 11 2024].

[60] SamMonoRT, "Migrations Overview - EF Core," Microsoft, 02 01 2023. [Online].

Available: https://learn.microsoft.com/en-us/ef/core/managing-schemas/migrations/.

[Accessed 10 11 2024].

[61] SamMonoRT, "Applying Migrations - EF Core," Microsoft, 18 02 2023. [Online].

Available: https://learn.microsoft.com/en-us/ef/core/managing-

schemas/migrations/applying. [Accessed 10 11 2024].

[62] Microsoft, "Quickstart: Deploy an ASP.NET web app - Azure App Service |

Microsoft Learn," Microsoft, [Online]. Available: https://learn.microsoft.com/en-

us/azure/app-service/quickstart-dotnetcore?tabs=net80&pivots=development-

environment-vs. [Accessed 10 11 2024].

[63] Postman, "Postman API Platform," Postman, [Online]. Available:

https://www.postman.com/. [Accessed 10 11 2024].

[64] N.-O. Skeie, Lecture notes for object-oriented analysis, design, and programming

using UML and C#, Porsgrunn: University of South-Eastern Norway, 2023.

[65] Stack Overflow, "2024 Stack Overflow Developer Survey," Stack Overflow,

[Online]. Available: https://survey.stackoverflow.co/2024/technology#most-popular-

technologies-language. [Accessed 29 09 2024].

[66] Apple, "Apple Developer Documentation," Apple, [Online]. Available:

https://developer.apple.com/documentation/xcode. [Accessed 29 09 2024].

[67] BrowserStack, "What is Xcode: Features, Installation, Uses, Advantages and

Limitations," BrowserStack, [Online]. Available:

https://browserstack.wpengine.com/guide/what-is-xcode/. [Accessed 29 09 2024].

[68] REactive Native, "Set Up Your Environment · React Native," Reactive Native,

[Online]. Available: https://reactnative.dev/docs/set-up-your-environment. [Accessed

29 09 2024].

[69] AltexSoft, "What is Xamarin? Xamarin vs Native App Development," AltexSoft, 21

12 2022. [Online]. Available: https://www.altexsoft.com/blog/pros-and-cons-of-

xamarin-vs-native/. [Accessed 29 09 2024].

[70] Softude, "Xamarin Cross-Platform Development: Fundamentals & Best Practices,"

Softude, [Online]. Available: https://www.softude.com/blog/xamarin-the-ultimate-

cross-platform-mobile-app-development. [Accessed 29 09 2024].

70

[71] Flat Rock Technology, "From Xamarin to MAUI, What has changed?," Flat Rock

Technology, [Online]. Available: https://flatrocktech.com/blog/xamarin-forms-maui-

migration. [Accessed 29 09 2024].

[72] GitHub, "Releases · coronalabs/corona," GitHub, [Online]. Available:

https://github.com/coronalabs/corona/releases. [Accessed 29 09 2024].

[73] M. Bellinaso, "Flutter: the good, the bad and the ugly," ASOS Tech Blog, 25 07

2020. [Online]. Available: https://medium.com/asos-techblog/flutter-vs-react-native-

for-ios-android-app-development-c41b4e038db9. [Accessed 29 09 2024].

[74] BeeWare, "Write once. Deploy everywhere.," BeeWare, [Online]. Available:

https://beeware.org/. [Accessed 29 09 2024].

[75] Kivy, "Installing Kivy," Kivy, [Online]. Available:

https://kivy.org/doc/stable/gettingstarted/installation.html. [Accessed 29 09 2024].

[76] Ionic, "Open-Source UI Toolkit to Create Your Own Mobile Apps," Ionic, [Online].

Available: https://ionicframework.com/docs. [Accessed 29 09 2024].

71

Appendices

Appendix A Project description

Appendix B Gantt-diagram for project

Appendix C GitHub repository

1

Appendix A Project description

2

1

Appendix B Gantt-diagram for project

1

Appendix C GitHub repository

The GitHub repositories can be found at:

https://github.com/FM4017-Project-2024

https://github.com/FM4017-Project-2024

